
Deployment Modes
SSH Gateway can be deployed in Forward-Proxy
and Reverse-Proxy mode, either as (virtual) appli-
ance on-premise or as gateway in the cloud, always
sits between the SSH client and the SSH server to
filter the SSH traffic.

Supported Application Proxies
Plain SSH protocol supported to control channel
opening for commands, subsystems, TCP forward
and reverse tunnels.
Shell proxy support to monitor, modify and block all
commands exchanged on a shell channel.
SCP and SFTP proxies to monitor, modify or block
files uploaded and downloaded; allows to filter file
data chunk-by-chunk or hold chunks of data until a
policy decision is made.
A git proxy to parse repository pull and push re-
quests and filter transferred files and data.

Policy Engine
Fully flexible policy design as Python script. Define
access control for which user is allowed to access
with which credentials and to which destination.
Optionally, leverage a built-in AuthDatabase feature
to simplify the Python script.
Additional Python methods for each SSH command,
shell command and transferred file via SCP, SFTP or
git.

Directing user traffic to SSH Gateway
As reverse proxy, leverage DNS settings to direct
traffic to SSH Gateway. As forward proxy, explicitly
address SSH Gateway as a proxy with multiple op-
tions to encode the final server name in the user-
name. Or configure SSH Gateway in virtual Jum-
pHost mode. Simplified addressing via SSH config
file.

Host Authentication
Authenticate upstream server by host keys or host
certificates (from trusted CAs). Policy control for
new hosts and keys. Supports SSH protocol exten-
sion for automatic host key updates.

User Authentication
Support for public key authentication and user cer-
tificates from trusted CAs. Password authentication
disabled by default but possible via policy.
By leveraging the SSH agent protocol, SSH Gateway
can forward user authentication to the upstream

server without the need to import
private user keys. If private user keys
shall be imported, the decryption key
can be stored securely without stor-
ing the original passphrase.

Logging
 • Access Log at the end of each SSH connection.
 • Commands Log with entries for each executed

SSH command.
 • Files Log for each transferred file.
 • Custom logs (unlimited number), triggered by

policy, written at the end of a transaction.
All log files with many standard fields plus freely de-
finable custom fields, calculated in Python policy.
Log files auto-rotate daily.

Crypto Algorithms
Kex Algorithms:
 • curve25519-sha256
 • diffie-hellman-group14-sha256 and -sha1
Host Keys:
 • ssh-ed25519
 • rsa-sha2-512 and rsa-sha2-256
 • ssh-ed25519-cert-v01@openssh.com
 • rsa-sha2-256-cert-v01@openssh.com (and -512)
Packet Encryption:
 • chacha20-poly1305@openssh.com
 • aes256-ctr, aes192-ctr, aes128-ctr
Packet MAC:
 • chacha20-poly1305@openssh.com
 • hmac-sha2-512, hmac-sha2-256, hmac-sha1
 • All also in the xxx-etm@openssh.com variant

Architecture
Single process running on Linux or MacOS
Execute either natively or within Docker container
Fixed number of working threads, asynchronous
socket communication and policy task chain
Minimal system dependencies
Low system resources
Highly scalable

SSH Gateway

Cloud Fellows GmbH • Hünenweg 15 • 33104 Paderborn, Germany • sales@cloudfellows.de


